AI ALGORITHM CATEGORIES

🧠 NATURAL LANGUAGE PROCESSING

GPT-Neo 2.7B

ACTIVE

Large Language Model with 2.7B parameters. Architecture: Transformer decoder with rotary position embeddings. Training: 825GB text corpus.

PARAMETERS: 2.7B
CONTEXT LENGTH: 2048 tokens
MEMORY USAGE: 11.2 GB VRAM
96%PERPLEXITY
8.2msINFERENCE
78%GPU LOAD

BERT-Large

IDLE

Bidirectional Encoder Representations from Transformers. 24 layers, 1024 hidden units. Pre-trained on BookCorpus + Wikipedia.

PARAMETERS: 340M
MAX SEQUENCE: 512 tokens
FINE-TUNED ON: GLUE benchmark
93%F1 SCORE
45msINFERENCE
25%GPU LOAD

Transformer XL

ACTIVE

Extended context transformer with recurrence mechanism. Segment-level recurrence with relative positional encoding.

PARAMETERS: 257M
MEMORY LENGTH: 3800 tokens
ATTENTION LAYERS: 18 layers
97%ACCURACY
4msINFERENCE
40%GPU LOAD

👁️ COMPUTER VISION

YOLO-v8

ACTIVE

Real-time object detection. CSPDarknet53 backbone with PANet neck. Trained on COCO dataset with 80 object classes.

INPUT SIZE: 640x640 pixels
CLASSES: 80 COCO objects
ARCHITECTURE: CSPDarknet + PANet
91%mAP@50
35fpsFPS
55%GPU LOAD

Stable Diffusion

ACTIVE

Text-to-image diffusion model. Latent Diffusion Model (LDM) with CLIP text encoder and U-Net denoising network.

PARAMETERS: 860M UNet
OUTPUT: 512x512 RGB
SAMPLING STEPS: 50 DDIM steps
12.6FID SCORE
6.5sGENERATE
85%GPU LOAD

🔗 MULTIMODAL AI

CLIP

IDLE

Contrastive Language-Image Pre-training. Vision Transformer + Text Transformer trained on 400M image-text pairs.

VISION MODEL: ViT-B/32
TEXT MODEL: Transformer 63M
TRAINING DATA: 400M pairs
88%ACCURACY
12msINFERENCE
30%GPU LOAD

🎮 REINFORCEMENT LEARNING

DQN Agent

ACTIVE

Deep Q-Network with experience replay and target network. CNN + fully connected layers for Atari game environments.

NETWORK: CNN + FC layers
REPLAY BUFFER: 1M transitions
EXPLORATION: ε-greedy (0.1)
95%REWARD
1.8msACTION
42%GPU LOAD

PPO Agent

ACTIVE

Proximal Policy Optimization for continuous control. Actor-Critic architecture with clipped surrogate objective.

POLICY NET: Actor-Critic
CLIP RATIO: 0.2
ENTROPY COEF: 0.01
98%REWARD
3.2msACTION
52%GPU LOAD

🎨 GENERATIVE MODELS

GAN Generator

ERROR

Generative Adversarial Network with Progressive Growing. WGAN-GP loss for stable training on CelebA-HQ dataset.

ARCHITECTURE: ProGAN + WGAN-GP
OUTPUT RES: 1024x1024
DATASET: CelebA-HQ
82%IS SCORE
2.3sGENERATE
65%GPU LOAD

VAE-β

IDLE

β-Variational Autoencoder for disentangled representation learning. KL divergence with β=4 regularization.

LATENT DIM: 512 dimensions
β PARAMETER: 4.0
ENCODER: ResNet backbone
92%ELBO
1.7msENCODE
10%GPU LOAD

⚡ OPTIMIZATION ALGORITHMS

Quantum Optimizer

IDLE

Quantum-inspired optimization using Variational Quantum Eigensolver (VQE) with parameterized quantum circuits.

QUBITS: 16 simulated
ANSATZ: Hardware Efficient
BACKEND: Qiskit Aer
89%ACCURACY
0.8msOPTIMIZE
23%GPU LOAD

Genetic Algorithm

ERROR

Evolutionary computation with tournament selection, crossover, and mutation operators for complex optimization problems.

POPULATION: 1000 individuals
SELECTION: Tournament (k=3)
MUTATION RATE: 0.01
76%FITNESS
15msGENERATION
45%CPU LOAD